首页> 外文OA文献 >An artificial neural network-based diagnostic methodology for gas turbine path analysis—part II: case study
【2h】

An artificial neural network-based diagnostic methodology for gas turbine path analysis—part II: case study

机译:基于人工神经网络的燃气轮机路径分析诊断方法-第二部分:案例研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The reliability of gas path components (compressor, burners and turbines) of a gas turbine is generally high, when compared with those of other systems. However, in case of forced stops, downtime is usually high, with a relatively low availability. The purpose of conditions monitoring and faults diagnostics is to detect, isolate and evaluate (i.e., to estimate quantitatively the extent) defects within a system. One effective technique could provide a significant improvement in economic performance,, reduce operating costs and maintenance, increase the availability and improve the level of safety achieved.\udHowever, conventional analytical techniques such as gas path analysis and its variants are limited in their engine diagnostic, due to several reasons, including their inability to effectively operate in the presence of noise measures, to distinguish anomalies of component from a failure sensor, to preserve the linearity in the relations between parameters of gas turbines and to manage the sensors range to achieve accurate diagnosis. In this paper, the approach of a diagnostic scenario to detect faults in the gas path of a gas turbine has been presented. The model provides a largescale integration of artificial neural networks designed to detect, isolate and evaluate failures during the operating conditions. \udThe engine measurements are considered as input for the model, such as the speed, pressure, temperature and fuel flow rate. The output supplies any changes in the sensor or in the efficiency levels and flow rate, in the event of fault components. The diagnostic method has the ability to evaluate both anomalies of multiple components or multiple sensors, within the range of operating points. In the case of components failures, the system provides diagnostic changes in efficiency and flow rate, which can be interpreted to determine the nature of the physical problem. The technique has been applied in different operating conditions by comparing the results obtained with the solutions provided by linear and nonlinear analysis.
机译:与其他系统相比,燃气轮机的气路组件(压缩机,燃烧器和涡轮机)的可靠性通常很高。但是,在强制停止的情况下,停机时间通常较长,而可用性相对较低。状态监视和故障诊断的目的是检测,隔离和评估(即,定量估计范围)系统中的缺陷。一种有效的技术可以显着改善经济性能,降低运营成本和维护成本,提高可用性并提高所达到的安全水平。\ ud然而,常规分析技术(例如气路分析及其变型)在发动机诊断中受到限制,由于多种原因,包括在噪声措施下无法有效运行,无法将组件异常与故障传感器区分开来,无法保持燃气轮机参数之间的线性关系以及管理传感器范围以实现准确诊断。在本文中,提出了一种诊断方案来检测燃气轮机气路故障的方法。该模型提供了人工神经网络的大规模集成,旨在检测,隔离和评估运行条件下的故障。 \ ud发动机测量值被认为是模型的输入,例如速度,压力,温度和燃油流速。如果出现故障组件,输出可提供传感器或效率水平和流量的任何变化。该诊断方法具有在工作点范围内评估多个组件或多个传感器的异常的能力。在组件发生故障的情况下,系统会提供效率和流速方面的诊断性变化,可以将其解释为确定物理问题的性质。通过将获得的结果与线性和非线性分析提供的解决方案进行比较,该技术已应用于不同的工作条件。

著录项

  • 作者

    Capata, Roberto;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号